Multivariate linear regression with non-normal errors: a solution based on mixture models
نویسندگان
چکیده
In some situations, the distribution of the error terms of a multivariate linear regression model may depart from normality. This problem has been addressed, for example, by specifying a different parametric distribution family for the error terms, such as multivariate skewed and/or heavy-tailed distributions. A new solution is proposed, which is obtained by modelling the error term distribution through a finite mixture of multi-dimensional Gaussian components. The multivariate linear regression model is studied under this assumption. Identifiability conditions are proved and maximum likelihood estimation of the model parameters is performed using the EM algorithm. The number of mixture components is chosen through model selection criteria; when this number is equal to one, the proposal results in the classical approach. The performances of the proposed approach are evaluated through Monte Carlo experiments and compared to the ones of other approaches. In conclusion, the results obtained from the analysis of a real dataset are presented.
منابع مشابه
The Family of Scale-Mixture of Skew-Normal Distributions and Its Application in Bayesian Nonlinear Regression Models
In previous studies on fitting non-linear regression models with the symmetric structure the normality is usually assumed in the analysis of data. This choice may be inappropriate when the distribution of residual terms is asymmetric. Recently, the family of scale-mixture of skew-normal distributions is the main concern of many researchers. This family includes several skewed and heavy-tailed d...
متن کاملApplication of non-linear regression and soft computing techniques for modeling process of pollutant adsorption from industrial wastewaters
The process of pollutant adsorption from industrial wastewaters is a multivariate problem. This process is affected by many factors including the contact time (T), pH, adsorbent weight (m), and solution concentration (ppm). The main target of this work is to model and evaluate the process of pollutant adsorption from industrial wastewaters using the non-linear multivariate regression and intell...
متن کاملModeling of temperature in friction stir welding of duplex stainless steel using multivariate lagrangian methods, linear extrapolation and multiple linear regression
In this study, the temperature in friction stir welding of duplex stainless steel has been investigated. At first, temperature estimation was modeled and estimated at different distances from the center of the stir zone by the multivariate Lagrangian function. Then, the linear extrapolation method and multiple linear regression method were used to estimate the temperature outside the range and ...
متن کاملModeling of temperature in friction stir welding of duplex stainless steel using multivariate lagrangian methods, linear extrapolation and multiple linear regression
In this study, the temperature in friction stir welding of duplex stainless steel has been investigated. At first, temperature estimation was modeled and estimated at different distances from the center of the stir zone by the multivariate Lagrangian function. Then, the linear extrapolation method and multiple linear regression method were used to estimate the temperature outside the range and ...
متن کاملKinetic modeling of methylene blue adsorption onto acid-activated spent tea: A comparison between linear and non-linear regression analysis
The kinetic study of methylene blue (MB) adsorption using acid-activated spent tea (AAST) as an adsorbent from aqueous solution with the aim of comparing linear and non-linear regression analysis methods was performed at varying initial MB concentrations (10-100 mg/l). Hence, spent tea leaves, which were activated using concentrated sulfuric acid, were prepared. The physicochemical characterist...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Statistics and Computing
دوره 21 شماره
صفحات -
تاریخ انتشار 2011